Classification of Rotational Surfaces in Pseudo-galilean Space
نویسنده
چکیده
In the present paper, we study rotational surfaces in the three dimensional pseudo-Galilean space G3. Also, we characterize rotational surfaces in G3 in terms of the position vector field, Gauss map and Laplacian operator of the second fundamental form on the surface.
منابع مشابه
Linear Weingarten Rotational Surfaces in Pseudo-Galilean 3-Space
In the present paper, we study rotational surfaces in the three dimensional pseudo-Galilean space G3. Also, we classify linear Weingarten rotational surfaces in G3. A linear Weingarten surface is the surface having a linear equation between the Gaussian curvature and the mean curvature of a surface. In last section, we construct isotropic rotational surfaces in G3 with prescribed mean curvature...
متن کاملOn a Certain Class of Translation Surfaces in a Pseudo-Galilean Space
In this paper we describe a special class of translation surfaces in a pseudo-Galilean space. We analyze translation surfaces having constant Gaussian and mean curvatures, as well as translation Weingarten surfaces. Mathematics Subject Classification: 53A35, 53A40
متن کاملClassification of Factorable Surfaces in the Pseudo-galilean Space
In this paper, we introduce the factorable surfaces in the pseudo-Galilean space G3 and completely classify such surfaces with null Gaussian and mean curvature. Also, in a special case, we investigate the factorable surfaces which fulfill the condition that the ratio of the Gaussian curvature and the mean curvature is constant in G3.
متن کاملSurfaces of Constant Curvature in the Pseudo-Galilean Space
We develop the local theory of surfaces immersed in the pseudo-Galilean space, a special type of Cayley-Klein spaces. We define principal, Gaussian, and mean curvatures. By this, the general setting for study of surfaces of constant curvature in the pseudo-Galilean space is provided. We describe surfaces of revolution of constant curvature. We introduce special local coordinates for surfaces of...
متن کاملThe equiform differential geometry of curves in the pseudo - Galilean space ∗
In this paper the equiform differential geometry of curves in the pseudo-Galilean space G3 is introduced. Basic invariants and a moving trihedron are described. Frenet formulas are derived and the fundamental theorem of curves in equiform geometry of G3 is proved. The curves of constant curvatures are described.
متن کامل